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An extension of the piecewise parabolic method to treat multi-
dimensional ideal magnetohydrodynamical eguations is presented
in this paper. The multidimensional scheme is constructed from a
one-dimensional functioning code based on the dimensional split-
ting method originally suggested by Strang. The functioning code
is buift upon a nonlinear Riemann solver for ideal MHD equations
recently developed by the authors. The correctness of the scheme is
tested in the steepening of waves in both one- and two-dimensional
situations and in various MHD shock-tube problems which involve
all the discontinuities in ideal MHD. The robust character of the
scheme is demonstrated in the shock-tube problems and in the
interaction between MHD shocks and a cloud. The results of these
problems show that the scheme keeps the principal advantages of
a high-order Godunov scheme: robust operation in the presence
of very strong waves, thin shock fronts with little attendant noise
generation, and thin contact discontinuity. © 1994 Academic Press, Inc,

1. INTRODUCTION

The Godunov's approach [1] of using Riemann problems to
obtain robust, upstream ceniered difference schemes has been
proved very effective for compressible gas dynamics. Schemes
based on this approach were compared with other technigues
in [7] and the special advantages and costs of these schemes
were discussed. Since the early MUSCL scheme [2, 3] several
other schemes involving higher-order constructions of the Go-
dunov-type with characteristic formulations have been devised
(for example, see [4—8]). The principal advantages of these
schemes are the robust operation in the presence of very strong
waves, thin shock fronts with little attendant noise generation,
and thin contact and slip swrface discontinuities.

For several years efforts have been underway to develop
magnetohydrodynamical (MHD) schemes based upon Godu-
nov’s approach and offering the same advantages listed above
[9-15]. Especially, Brio and Wu [11] have developed a high-
resolution method for MHD based on Roe’s approach. Zachary
et al. {13, 14] have applied a high-order method for general
systems of hyperbolic conservation laws to ideal MHD equa-
tions, and the high order method for general systems [12] is
the extension of Enquist—Osher flux [5]. A major difficulty
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in developing a high-order Godunov scheme for ideal MHD
equations has been the development of a nonlinear Riemann
solver and dealing with the nonstrict hyperbolicity of MHD
equations [11, 16, 17].

The scheme described here is built upon a nonlinear MHD
Riemann solver recently developed by the authors. The proce-
dure for multidimensional MHD simulations is described in
this paper. The correciness and robustness of the scheme is
demonstrated in various shock-tube problems, in the wave prop-
agation in both one- and two-dimensional simulation domains,
and in the interaction between MHD shocks and a cloud.

The plan of this paper is as follows. In the second section
the basic equations to be simulated will be given and a Godunov
scheme will be introduced. The numerical scheme will be pre-
sented in the third section, which includes a nonlinear Riemann
solver, a one-dimensional functioning code, our consideration
for the nonstrict hyperbolicity, a scheme for multidimensional
situations, and discussion of the divergence-free condition of
the magnetic field. The numerical examples are in the fourth
section, which include the propagation of MHD waves and
various shock-tube problems, and the interaction between MHD
shocks and a cloud. The conclusions of this paper and brief
discusstons may be found at the end of this paper.

2. MHD EQUATIONS

The MHD equations characterize the flow of a conducting
fluid in the presence of a magnetic field. They represent cou-
pling of the fluid dynamical equations with Maxwell’s equations
of electrodynamics. By neglecting displacement current, elec-
trostatic force, effects of viscosity, resistivity, and heat conduc-
tion, we have the set of ideal MHD equations [18],

% vy =0,

” (1.1)
%(m}+V‘(mu+$)=0, 12)
%(p5)+v-(puE+,3-u)=o, (13)
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Bv.F=0
at

{1.4)
where p is the mass density, u is the flow velocity, B is the
magnetic field, P is the stress tensor including the effects of
the magnetic fields as well as the thermal pressure p, E is the
total specific energy, and Tis the antisymmetric tensor product
of the flow velocity and the magnetic field,

1

!m,l (P +_B2)6U__BB

with & being the specific internai energy. It is easy to see that
V- TisV X (u X B). Writing it in the form above shows
mere clearly that the equation is in the conservation form. This
set of equations has to be completed with an equation of state,
The thermal pressure is assumed to be related to the internal
energy density & through the gamma-law p = (y — 1)pe with
v as the ratio of the specific heat capacities of the gas.

Since we will be working on a Lagrangian mass coordinate
m, which is defined by dm = dr with r = (x, y, ), we rewrite
the ideal MHD equations in the Langrangian mass coordinate:

av _
o V.-u=0, 2.1)
du
T +V, - P=0, 2.2)
dE +V, (u: P) = (2.3)
dt
ﬁ-{? -V, (Bu)=0 2.4

where V is the specific volume V = 1/p.

In this paper we will construct a high-order numerical scheme
which employs the dimensional splitting technique. Therefore
we write a projection {e.g., on the x-direction) of the ideal
MHD equations explicitiy:

aF(U) _
at om 0 (32)
and

3 d N
E(VBJ - ﬁ(B,u,) =0, (3b)
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with

- V - - —u, -
U, P
u, A,

U= | u |, Fl) = A, ey

VB, —B.u,
VB. _ ~B.u

| E L Pu, + Au, + A, |

Here the mass coordinate is defined by dm = pdx as in [7, 8];.
P,A,, andHA: are the diagonal and off-diagonal elements of
the tensor P:

1
P=p+— (B +B - BY),
p+ o (Bi+Bl—BY)
1
A, =——B.B,,
i) 477
A=-Lpp
Y

Here we have written Eq. (3b) separately, since our one-dimen-
sional functioning code, which is used in our multidimensional
scheme and will be introduced in Section 3.2, deals with only
Eq. (3a).

Considering 2 zone in a Langrangian grid with its left and
right interfaces x; and xg, respectively, we write the following
difference scheme for the conservation law Eq. (3):

UAn) = (UO) + £ (F, ~ Fy). )

Here At is the time step and Am is the mass contained in the
zone, {U(1)} is the average of U over the zone at time ¢, and
F, (or Fy) is the time-averaged flux at the left (or right) interface
of the zone during the time step Ar; ie.,

1
Uy == [, Ut xdx,

F o1
Foz= Ar jm Ult, xp p)dt

with Ax the width of the zone. This discretized Equation (5)
may be obtained by integrating Eq. (3), over the rectangular
x; < x < xpand O <t << Arinthe (x — 1) space. The discretized
form of Eg. (5) is exact if the time-averaged flux F,; may be
found exactly. Our nonlinear Riemann solver will be used to
calculate the set of time-averaged flux.
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3. NUMERICAL SCHEME

In this section, we will introduce a high-order numerical
scheme for the ideal MHID> equations (1.1)—(1.4), which in-
cludes a nonlinear Riemann solver, a one-dimensional function-
ing code, the consideration of the nonstrict hyperbolicity, the
scheme for multidimensional situations, and the discussion for
the divergence-free condition for the magnetic field. Before
we discuss the nonstrict hyperbolicity, we assume that any
component of the magnetic field does not vanish exactly.

3.1. A Nonlinear Riemann Solver

A Riemann problem in ideal MHD is an initial value problem,
Eq. (3), subject to a specific initial condition:

UL (x < 0)9

Udx) =
o) Uz (x>0

Here U, and Uy are any given left and right states. The difficulty
in the Riemann problem is the more than one discontinuities
which may be generated from the initial conditions. As we
know, across any discontinuity in ideal MHD, the longitudinal
component of the magnetic field remains unchanged. Therefore
we assume that the component is a constant in this subsection.
The case with a varying longitudinal component, which will
be encountered in a dimensional splitting method, will be dis-
cussed in the subsection entitled **A Scheme for Multidmen-
sional Situations.”’

It is well known that the basic equation (3) allows three
kinds of waves: fast, Alfven, and slow waves, besides entropy
waves. An entropy wave 1s stationary in a Langrangian coordi-
nate, and the fast, slow, and Alfven waves have their wave
speeds C;, C,, and C,, respectively:

1
Ch=51(Ci+ Ci+ Ci) = VICE+ CL+ CY — 4CEC).

Here the plus sign is for fast waves, and the minus sign for
slow waves. Cy, C,, and C, are defined as

Co=Vypp,
C, = VpBi/(am),
C, = Vp(B: + BY/(4n).

Note that the wave speeds are defined in the Langrangian mass
coordinate. Their equivalences in an Eulerian coordinate may
be obtained through dividing them by the mass density p. Since
smooth fast and slow waves may develop into shocks, our
nonlinear Riemann solver is based on jump conditions for dis-
continuities. Such jump conditions may be derived directly
from the conservations of the mass, momentum, energy, and
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FIG. 1. Al possible waves generated from a MHI} Riemann problem and
eight possibly different states divided by the wave fronts.

magnetic flux. An example of such derivation may be found
in the book by Courant and Friedrichs [19]. The jump conditions
may also be obtained simply by integrating Eq. (3) over a dis-
continuity:

Wiv] = —[u,], (6.1)
Wlu,] = [P], (6.2)
Wi, ] = AL, {6.3)
W] = [A.], (6.4)
WIVB,] = —B,lu,], (6.5)
WIVB,) = —B,[u], (6.6)
WIE] = (,P] + [, A, ] + [,A, ). (6.7)

Here W is the speed of the discontinuity surface propagating
in the mass coordinate. The bracket [X ] stands for the difference
between the states on the two sides of the surface, ie., [X] =
X, — X,. Physically, W is the mass flux across the discontinuity,
ie., W = (5 — u,g)p, with s being a usual shock speed and u,,
being the x-component of the flow velocity in the preshock
state. W is negative when the discontinuity propagates in the
negative x-direction. This set of jump conditions is equivalent
to that derived from the Eulerian equations in the book by
Landau and Lifshitz [18). In our Riemann solver, we will ap-
proximate rarefaction waves by rarefaction shocks obeying the
jump conditions given above (and involving decreases in the en-
tropy).

There are five kinds of discontinuities which may exist under
ideal MHD equations: contact discontinuities, tangential dis-
continuities, fast shocks, slow shocks, and rotational discontinu-
ities. A more detailed description of MHD discontinuities may
be found in many standard texts (for example, Landau and
Lifshits [18], Jeffrey and Taniuti [20], Kulikovskiy and Lyubi-
mov [21], Kantrowitz and Petschek [22]).

In a general MHD Riemann problem, there are six waves
traveling leftward and rightward, which may be generated from
an initial discontinuity. The waves traveling leftward are sepa-
rated by a contact surface from the waves traveling rightward.
Each wave may be either continuous or discontinuous. The
appearance and the strength of each wave depends on specific
data in the initial discontinuity. The wave fronts corresponding
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FIG. 2. Ilustrations for domains of dependence for various waves,

to the three waves in either direction and a contact surface
separate whole (x — ¢} plane into eight possibly different re-
gions. We label them R1, R2, R3, R4, R5, R6, R7, and RS,
respectively, as shown in Fig. 1. The states in the regions R1
and R8 are the left and right states in the Riemann problem, re-
spectively.

To find a nonlinear Riemann solver, we find a formula for
the shock speeds, W, for fast shocks and W, for slow shocks,
in terms of the preshock state and one transverse component
of the magnetic field in the posishock state:

1
Wi =———{CI+Ci+A
B (1 + Ag) e+ c+a) (N

EVCI+ CHH AY — 41 + AYCICE — A}

Here the plus sign is for fast shocks and the minus sign for
slow shocks. Ay, are defined as

A
A==ty -2,

) B,
A= { — Dhp g A+ 26
) o [A]
—(y —HCt - 2¢CY A,
Ay = 20T = (v + DAPAIA,)

A,
+ oy + DCICL+ (y + DT — zcacﬁ}%

¥

Here A = 1 + (B./B. ) and the variables in A, , are evaluated:

at the preshock state except for the jump [A,]. For a given set
of left and right states, we construct a Riemann solution by the
following procedures:

{1) Guess one transverse component (e.g., y-component)
By, B,,, and B,; of the magnetic field in regions R2, R4, and
R7, and the orientation ¢ of the transverse part of the magnetic
field in regions R3, R4, RS, and R6. Here tan ¢ = B,;/B,;.

(2) Consider the right and left states as two preshock states,
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calculate two fast shock speeds using Eq. (7), one for the
wave traveling rightward and the other for the wave traveling
lefiward, then from the jump conditions (6.1)—(6.7) with these
two shock speeds and the values of B, in the two postshock
states, find the complete states in regions R2 and R7, respec-
tively.

(3) Perform the rotations with the earlier guess ¢, then use
the jump conditions {6.1)—(6.7) with the speed W equal to the
Alfven speeds in regions R2 and R7 to get the complete states
in regions R3 and R6, respectively.

(4y Consider the states in regions R3 and Ré as two pre-
shock states, repeat step (2) for two slow shocks instead of fasi
shocks to get the states in regions R4 and R35.

(5) Apply the conditions for a contact discontinuity be-
tween regions R4 and R35 to improve the earlier guess on B,
B, B, and i as described below. With this improved guess,
go back to the procedure (1.

Following the first four steps, the state in region R4 (or R5)
is a function of B,,, By, ¥ (or Bya, By, By, ). If By, By,
B, and i are the solutions of the Riemann problem, two states
in regions R4 and R5 should be the same except for their mass
densities and total energies. The remaining requirements for a
contact discontinuity may be expressed as the same (p, u,, 4,,
u,) in regions R4 and R5:

wau(Byz. By, §) = us(By, By, ),
(B, B, ) = tys(Bq, By, W),
B, B, ) = us{Ba, B, ),
Pi(Bya, By, i) = ps(Bya, Bya, ),

This set of equations can be solved for B,,, B, By;, and ¢
iteratively by the Newton's method, i.e., the modifications 8,,,
8B,,, 8B,;, and &) of the initial guess on By, B, By, B,
and ¢ may be found by the foilowing set of equations:

o (G ;;i)%
N (aup1 au,s) -

s ona (G 5 ﬁ

%‘: 8B, + (g;: - j;j )53,.4 - gg—i 8B,
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ap, ( dp.  ops ) aps
~— 5B, + -— 2| 6B, — —8B,
3B, 7 \oB. 4B, " oB,
aps Ips
+ 1= -2) 8¢ = ps — p,.

The initial guess needed in the nonlinear Riemann solver
may be obtained from a linear Riemann solver. Our hinear
Riemann solver is based on characteristic formulations. Char-
acteristic formulations in ideal MHD equations have also
been discussed by previous investigators (e.g., [9-11, 13, 14]).

Following the general outline given by Courant and
Friedrichs {191, it is not difficult to find all the characteristic
curves and their associated Riemann invariants. The first charac-
teristic curve is z straight line, which is found to be

Le:—=10,
O di

and its associated Riemann invariant is

Ry =pV. (8.1)

The logarithm of this invariant is proportional to the specific
entropy. Along the characteristic curve Ly, the entropy is con-
stant, but across it, the specific volume and entropy may have
jumps. The remaining six Riemann invariants for two fast,
two slow, and two Alfven waves may be expressed only as
inexact differentials;

dR;. = (C2— C2)(dP = Cydu,)

+ pA (dA, = Cedu,) + pA(dA, + Cdu ), (8.2)

dR,. ={(C! — C{dP = C,du,)

+ pA(dA, £ Codu,)y + pAdA, + Cidu,), (8.3)

dR,. = *C,(B.du, - Bydu,) + (B.dA, — B,dN,).  (8.4)

Along any characteristic curve, L, which is defined as dx/dr=
C with C being among Cp., C,-, C,., its associated Riemann
invariant R remains unchanged, i.e.,

i’f+ Ci?—R =Q,
dr X

Only for the initial guess do we assume that the difference
between left and right states is small. The initial solution for
(P, u,, u,, u,, A, A;)in region R4 may be obtained from the
conservation of the Riemann invariants along their characteris-
tic curves:
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a(P— Py + aClu, —ug) + pA (A, — Ay)

+ pALCilu, — uy )+ pALA. — AL)

+ pA.Clu, — 1y ) = 0, (9.1)
afP — Pp) + a;Clu, — ug) + pA (A, — Ag)

—pA, G, —ug) + pA(A, — Ag)

= pAClu, — ey =10, 8.2
a(P—P)+aClu, ~ )+ pAiA, — Ay)

+ pAColu, —uy) + pA(A. — Ay)

+ pAColu, — 1y ) =0, (9.3)
a,(P = Pr) = a,Cilu, — up) + pA A, ~ Ap)

— pALClu, — ) + pA (A~ Ay)

— pAC(u. — uy) =0, 9.4
C,B.{u, —uy)— C.B(u,— uyy+ BAA — Ay)

=~ B(A, — AL =0, 9.5)
—C.B.(u, —ug) + CB.(u. — uz) + B.AA, — Ay)

= B,(A,— Ax)=0. (9.6)

Here the subscript ; (or ;) refers to the evaluation at the left
(or right) state, and the coefficients a;, are defined as a;,=
(C},— C3). All the coefficients in Egs. (9.1)-(9.5) may be
evaluated at either the left or the right state under the linear
approximation.

Our nonlinear Riemann solver is able to give enough accurate
solutions through a sufficient number of iterations, but for most
problems in simulations, one or two iterations is enough to get
a sufficiently accurate flux. Table VIla shows the solutions for
a Riemann problem in our formulations after five iterations,
which contain two fast rarefaction waves, two slow shocks with
Mach numbers 1.05 and 2.2, respectively, one rotational and
one contact discontinuity. Table VIIb shows the convergence
of wave speeds W for the two fast rarefaction waves and W
for the two slow shocks.

In case our nonlinear Riemann solver failed at a specific
interface and a specific time in a simulation, we stmply use the
solution from our linear Riemann solver in our numerical code.
Several other strategies (e¢.g., the use of averages between the
left and right states) have been tested in all the numericat
examples in this paper; we did not find any noticeable dif-
ference.

31.2. One-Dimensional Functioning Code

QOur one-dimensional functioning code is used to update
physical variables in a one-dimensional pass (for example, an
x-pass equation (3a)) and the procedures in the code will be
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used in our multidimensional scheme. The functioning code
starts from zone-averages of a set of physical variables (p,
Pty uy, i, B, By, B.) and updates the set of vanables except
B, through solving Eq. (3a). The longitudinal component B,
is allowed to vary with the space coordinate x in the
functioning code. The differentials of Riemann invariants,
Eqgs. (10.2)-(10.4}, are first derived from this set of physical
variables. Then a cubic polynomial is used to interpolate
each of the differentials and find the values of the Riemann
invariant at the interfaces of computational zones. Except
for the mass density p and the field component B,, the
values of other physical variables at the interfaces are obtained
through these interpolated Riemann invariants. For example,
from the values Ry, R,:;, and R,.; of Riemann invariants
at the left interface of a zone, we find the values P, A,
A, u., u,, and u_at the left interface through the following
set of equations:

afP — (P)) + a:Colu, — () + pAA, — (AD)
+ pA, Gy, — (uy)) + pA (A — (A))
+ PAsz(“: - (uz>) = Rf+.Ls
a(P = (P)) = a;C(u, — () + pA(A, = (A )
- pAva(“)- - <“_\-)) + pAz(A: - <A:))
- pAsz(u: - (uz>) = Rf—.Ls
a (P — (P)) + a.C(u, — (u)) + pA, (A, — (A,)
+ pA)‘C-T(“.\' - <“,\'>) + pA:(A: - <Az>)
+ PAZCS(uZ - (uz)) = Rs+,L,
as(P - <P>) + aSCf(uI - <ul)) + pA\(A\ - <A_\))
- pAst(”_r - (”y)) + pAz(Az - (A))
- pAzCs(uz - (uz)) = Rs—.Lp
CuB:(u_\' - (”y)) - CaB_\-(uz - (“:)) + Bz(A_\- - (A\>)
- B_\'(Az - (Az>) = Ru+.i,s
—C,B.(u, — (u))) + CB, (. — {u:)) + B.(A, — (A, })
- By(A: - <A\>) = Rt;‘.L-
Here { ) stands for a zone-average, and all the coefficients
are evaluated at the zone-averages. We should mention that a
simpler way is to interpolate physical variables directly to find
their values at the interfaces of zones, and it takes less computa-
tion and may achieve equally good results for most shock
problems. In his numerical experiments for gas dynamics,
Woodward has realized {23] that interpolating Riemann invari-

ants instead of physics variables may reduce noise generation
for slowly moving shocks. Therefore, the numerical examples
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in this paper are calculated through the interpolation of Riemann
invariants. All the exampies in this paper are also calculated
through the interpolation of the normal physical variables, and
we did not find noticeable differences in the results, except for
the first example. When we introduce the first example in Fig.
3 for the steepening of a MHD wave in the next section, we
will point out the difference in results between the two kinds
of interpolation.

After we get the values of the normal physical variables
at the interfaces, the monotonicity constraint originally sug-
gested by Van Leer [2] is applied to these values at the
interfaces. As we know, interpolated structures are not always
monotonically increasing {decreasing) even though they have
been constructed from monotone data. The over- and under-
shoots in the interpolated internal zone structures eventually
give rise to over- and undershoots in the zone-averaged data.
Van Leer realized that an advection scheme may be made
to preserve the monotonicity of its initial data if any non-
monotone interpolated zone structures are flattened so that they
become monotone. This leads the Van Leer’s monotonicity
constraint: no values interpolated within a zone shall lie
outside the range defined by the zone averages for this zone
and its two neighbors. The difference in the results between
with and without the monotonicity constraint may be found
in [24].

We assume that the flow is continuous inside each zone
but it may have big jumps across an interface of two
neighboring zones. After the monotonicity constraint is ap-
plied, a parabola defined by a zone-average and the values
at two edges of the zone is used to interpolate the structure
inside a zone for the calculation of a domain-average which
is the average over a domain of dependence. Consider a
point A at an interface as shown in Fig. 2 and draw
six characteristic curves through the poimt A, which are
approximated by six straight lines. The sections Ap Ag, Ay Ag,
and A, Aq are the domains of dependence for the fast, Alfven,
and slow waves traveling rightward, respectively, and the
sections Ay Ag, A.~Ap, and A, A, are the domains of depen-
dence for the fast, Alfven, and slow waves traveling lefiward,
respectively. The extension of each domain of dependence
for waves traveling rightward is approximately equal to C, Az,
and the extension of each domain of dependence for a4 wave
traveling leftward is approximately CpAr where C is an
associated wave speed among C;, C,, and C, and the subscript
. {or g) refers to the evaluation at the average over the left
(or right) zone of the interface. The domain-average on each
of the domains may be found through the interpolated internal
zone structure. Effective left and right states for a Riemann
problem arising from an interface between {/ — I1)th and
ith zones are found through two seis of Riemann invariants
at two sides of the interface, respectively. For example, the
effective left states (P, A,, A,, u., u,, &) are found through
the following set of equations which come from the conserva-
tion of Riemann invariants:
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FIG. 3. The stegpening of a MHD slow wave: y = §, B, = 2. Dashed lines are initial conditions and the solid lines are the profiles at four instants 1 =
1.27, 2.54, 3.82, and 3.08. During ¢ach interval the wave traveled about a half wavelength.
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ai(P ~ (P>df) + a;Cilu, — (“:)df) + PA)-(A_,- e <A;-)ay)
+ pA\ Cf(u_\' - (lt_v)cﬁ) + pA:(Az - (Az>df)

+ pA Cilue, — {u) ) = 0, (10.1)
a, (P = (P)) + a,Colu, = wda) + pA A, — (Ay)s)

= A Gy — Q) + pAC(AL — (A D)

+ pACo(u, — (t.)y) = 0, (10.2)
C.B.(u, = (u,)a) — C.B, G ~ (i )ar)

+ B (A, — (A )

—B(A, — (A)y) =0, {(10.3)

af P — Pyoig) — apCelut, — tmr) + pAGIA, ~ Aysip)
= PA Gy — ayioop) + pAL(A — Agioig)
= pACilu, — ugp) =0, (10.4)
a P — Py r) — . Clot, — oz} + pAVA, — Ayoiig)

- PA,\-Cs(“_v = dyi-pe) T pA A — Azu'—nk)

= pACu, — tymng) = 0, (10.5)
—C,B.{ty ~ tyi-yr) + CaB, (4, — 15— 10 )

+ BAA, — Ao i)

= B,(A, — Ayi-g) = 0. (10.6)

‘Here the subscripts , (or 4 or 4) stand for the average on the
domain of dependence for fast {or slow or Alfven) waves in
the (i — ) )th zone, and the subscript . ;x stands for the value
at the right edge of the (i — 1)th zone. The coefficients in this
set of equations are evaluated at the zone-averages on the (i —
1)th zone. Similar equations may be used to find the effective
right state if we replace the domain-averages in Egs. (10.1)-
(10.3) by the values at the left edge of the ith zone and replace
subscript ;e by () in BEq. (10.4), i e by { Y in Eq. (10.4),
a-te by { Y.z in Eq. (10.6), and if the coefficients are evaluated
at the zone averages over the ith zone. Since we assume that
the flow inside each zone is continuous, we may use the charac-
teristic formulations to find the effective left and right states.

After we found the effective left and right states, we use the
nonlinear Riemann solver described in Section 3.1 to find the
set of flux needed in the Godunov scheme, Eq. (5), and update
the conserved quantities, i.e., mass, momentum, energy, and
magnetic flux, by adding the flux advected into and subtracting
the flux advected out from a zone. Thus we have completed
one dynamical step in the Lagrangian grid.

One widely vsed formulation of Eulerian hydrodynamics
algorithms, due originally to DeBar [27], is that of performing
a hydrodynamics calculation for a one time step using a Lagran-
gian method and mapping the results onto a fixed Eulerian grid.
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After zone-averages in the Langrangian grid are obtained, a
cubic polynomial is used to interpolate the zone-averages in
order to find the values at edges of zones for each of physical
variable. Then the monotonicity constraint described above is
used to adjust the values at the edges. A parabola defined by
a zone-average and the values at the two edges of the zone is
used for the internal zone structure for each physical variable
in order to peform the mapping. The mapping procedure is
only a transformation from one grid to the other, and keeps the
conservation of the mass, momentum, energy, and magnetic
flux.

Finally, an artificial viscosity is used in our code for strong
shocks as in the piecewise parabolic method (PPM) scheme.
Attendant noise will be probably generated if no artificial vis-
cosity is introduced. For the artificial viscosity, the code first
finds the locations of strong shocks by checking the jump in
total pressure P and the divergence of the flow velocity. After
estimating the wave speed for the noise traveling away from
the shock in the shock frame and the domain of diffusion, the
code performs the diffusion by exchanging the amounts of the
mass, momentum, energy, and magnetic flux contained in the
two diffusion regions at two sides of an interface if there is a
strong shock present there. A more detailed discussion about
the artificial viscosity may be found in [7, 24]. The technique
introduced there for PPM is used in the scheme presented in
this paper. We mention that the code is still stable even if we
turn off the artificial viscosity for a strong shock. The results
when we turn off the artificial viscosity will be mentioned for
the propagation of a strong shock in Figs. 4a,b.

We should mention that in the one-dimensional functioning
code only two transverse components of the magnetic field are
updated, while the longitudinal component B, remains un-
changed. The component B, will be updated in other passes in
our multidimensional scheme.

3.3. Cousideration of the Noustrict Hyperbolicity

Mathematicaily, the vanishing of the [ongitudinal or tangen-
tial component of a local magnetic field will cause a singularity
because of the vanishing expansion coefficients when the Rie-
mann invariants are used. If any component of the magnetic
field is close to zero, our code uses a small value for it in the
calculation for the set of time-averaged fluxes to avoid the
singularity. Since the value is small but within the accuracy of
digits of a machine, the resulting magnetic pressure is very
small compared 1o the local thermal pressure.

3.4. A Scheme for Multidimensional Situations

Our two-dimensional scheme is built upon the dimensional
splitting method originally suggested by Strang [25]. Each time
step of a two-dimensiona) problem is broken down into one-
dimensonal passes in which derivatives in the other direction
are set to zero. Each row in the grid is treated as if it was an
independent one-dimensional problem. After all the rows in
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one direction are applied by the one-dimensional functioning
code, another pass in the other direction is made. These x- and
y-passes compose the first half time step. In the remaining half
time step, the scheme carries out the y-pass first and then the
x-pass. For stability of the scheme, the length of the time step
may be adjusted only after a complete one time step, i.e., two
x-passes and two y-passes,

Each pass (e.g., x-pass) of a two-dimensional scheme updates
a set of physical variables including p, p, u.,., and B, by
solving Eq. (3a) through the procedures described in our one-
dimensional functioning code (Section 3.2). The longitudinal
component B, will be updated in the y-pass of the dimensional
splitting method. Unlike the method presented in {14], we have
not introduced any source lerm arising from a varying B in the
direction of spatial integration in each of the one-dimensional
passes of the dimensional splitting method. In the nonlinear
and linear Riemann solvers described in Section 3.1. the longitu-
dinal component of the magnetic field is assumed to be a
constant. In a one-dimensional pass of a two-dimensional simu-
lation, the longitudinal component varies with the space coordi-
nate. The value at an interface after a linear or parabolic interpo-
lation of the longitudinal component may be used for the
Riemann problem arising from the interface. Therefore our one-
dimensional functioning code is used in each one-dimensional
pass of our multidimensional scheme.

3.5. The Divergence-free Condition
for the Magnetic Field

The divergence-free condition for the magnetic field is a
constraint on an initial condition, not an evolution equation.
Although the condition is maintained analytically by the field
evolution, it is true only up to a certain accuracy for difference
eguations. A nonzero divergence is a symptom of numerical
error for a difference scheme.

The magnetic field may be solved by evolving either the
field itself, or a vector potential. While these two approaches
are analytically identical, introducing a vector potential has
numerical disadvantages: a staggered grid is necessary, basic
equations are not in the form suitable for the characteristic
formulations, and the direct derivatives are needed. Because of
the direct derivatives, a truncation error of order unity will
happen for the magnetic field in the vicinity of a discontinuity.
Thus the numerical error for the divergence is stifl order unity
in the vicinity of a discontinuity, although normally no one
will suspect the divergence-free condition if a vector potential
is introduced.

The key issue for the divergence-free condition is whether
or not the divergence will be accumulated in a numerical
scheme, not whether or not it is vanishing exactly. Each pass
in our scheme conserves the magnetic flux exactly, and the
longitudinal component of the magnetic field remains un-
changed in a one-dimensional pass. We believe that our multidi-
mensional scheme conserves the magnetic flux. If calculated,
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the divergence of the magnetic field may be of order unity near
a discontinuity because of the truncation of the scheme. The
divergence outside a discontinuity may be reduced as small as
wanted when the mesh size is reduced. The structure inside a
discontinuity is unphysical under ideal equations, and we be-
lieve that the structure inside a discontinuity will not influence
the rest of a flow for a system without any source or sink, such
as ideal MHD equations, as long as the jump conditions for
the inflow and outfiow are satisfied.

The divergence-free condition in a high-order Godunov
scheme has been directly discussed by Zachary er al. [14].
Following the prescription in [28], they explicitly introduced
a step to ensure the divergence-free condition in their multidi-
mensional scheme based on the dimensional splitting method.
After each time step, they solve the Poisson equation for the
potential ¢

Vig+ V- -B=0

Then the new magnetic field is defined by B = B — V¢. But,
they did not find any noticeable difference whether or not they
applied this explicit step for their numerical examples.

We have not introduced any additional step to formally en-
sure the divergence-free condition in our scheme and we con-
sider such an additional step unnecessary, as indicated by the
numerical examples in [14] and discussed above. We will not
give any numerical measurement for the divergence in this
paper, because the value of the divergence may be calculated
only approximately outside a discontinuity, and it is meaning-
less inside a discontinuity in our formulations. Instead, in Sec-
tion 4.2.1 we will give one numerical example for the steepening
of a wave in a two-dimensional domain to show the conserva-
tion of the magnetic flux by the comparison with a one-dimen-
sional result. We will not discuss the divergence further in this
paper, although it is a very interesting issue.

4. NUMERICAL EXAMPLES

In this section we will give some numerical examples to
show the correctness and performance of the numerical scheme
described above, which include both one- and two-dimensional
situations. The one-dimensional simulations include the propa-
gation of waves and various shock-tube problems, and two-
dimensional problems include the propagation of a one-dimen-
sional wave in a two-dimensional domain, and the interaction
between MHD shocks and a cloud.

The ratio of the specific heat capacities 7y is set to § in ali
the numerical examples unless it is specified otherwise. Ounly
one iteration in our nonlinear Riemann solver is used in all the
examples, although our linear Riemann solver will give equally
good results for some of them. The grids used in all the examples
are uniform in all the examples. Mach number for a fast (or
slow or magnetosonic) shock is defined as the ratio between
the shock speed (s — uy) in the reference of the preshock state
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TABLE I

The Exact Solutions for the Riemann Problem in Fig, 74

Regions p p wr uy uz By Bz
L 1.500E - 01 2.800E — 01 2.155E + 01 L.OME + 00 1.00CE + 00 —2.000E + 00 —1.000E + 00
R2 5.853E — Gi 9.11ZE + Qi 3.773E — 05 1.000E + 00 1.000E + 00 —7.803E + 00 ~3902E + 06
R3 3.929E — 01 9.107E + 01 3773E — 05 0.000E + 00 0.000E + 00 7.858E + 00 3.929E + Q0
R 1.OOOE ~ 01 1.000E — 01 ~2.645E + 01 0.000E + 00 0.000E + 00 2.000E + 00 1.000E + 00
"B=0y=1

TABLE I1
The Exact Solutions for the Riemann Problem in Fig. 8°

Regions p r ux uy uz By Bz
L 3200E - 01 1483E + 01 —4.678E ~ 03 L910E + 00 9.551E — 01 2.239E + 00 1.120E + 00
RZ 3.200E — GI [483E + 01 —4.678E ~ 05 1.910E + 00 4.551E — Oi 2.239E + 00 (LI20E + 00
R3 3.580E — 01 1.228E + 01 —9.688E ~ 02 —6.078E — 01 —3.039E — 01 74A63E + 00 3.732E + 00
R L.OOCE — 01 LOGOE ~ 01 —1L.O41E + 01 0.000E + 00 0.000E + 0D 2.000E + 00 1.000E + OO
“B,=2,y=%

shock has no internal structure, the plot for the density displays
one unwanted structure, which arises from the pureiy discontin-
uous initial conditions and may be reduced by introducing a
small internal structure in the initial shock.

Figure 6 shows the results for the propagation of a magne-
tosonic shock with a Mach number of 12.8, which is represented
initially by the following left and right states: {p, p, u,,, u,, u,,

B,, B,) = (7.8073, 65.7254, 0, 0, 0, 7.8073, 3.9036) for x <
0.1 and (2, 0.1, —5.0459, G, 0, 2, 1) x > (.1 with vanishing
B,. The dashed lines in the figure are the initial conditions and
the solid lines are the profiles at r = 0.225 and 0.45, respectively.
The waves near x = 0.1 may be reduced by introducing a small
internal structure in the initial shock.

Another standard test for numerical schemes designed for

TABLE I1I

The Exact Solutions for the Riemann Problem in Fig. 9°

Regions p 4 wx uy uz By Bz
L 2.000E — O} 1.O7%E + 01 4.589E + 00 —2.061E + 00 3317E + 00 3.800E + 00 3.800E + 00
R2 2.000E — 01 1.079E + 01 4.58%E + 00 —1.081E + 00 1.215E + 00 5.354E + 00 4.684E — 01
R3 3.601E — 01 1.079E + 01 4.589E + 00 —1.081E + 00 1.215E + 00 5.354E + 00 4.684E — 01
R4 3.601E — 01 1.079E + 01 4.589E + 00 —3.507E - 01 —3.507E - 0! 3.800E + 00 3.800E + 00
R 1.OODE — 0] 2.000E — 0] —4.589E + 00 0.00CE + 00 0.000E + 00 L.DODE + 00 1.00DE + 00
"B.=2y=4%

TABLE IV
The Exact Solutions for the Riemann Problem in Fig. 10°

Regions p D ux uy uz By Bz
L 1.0OCE + 00 1.000E + 00 3.687E + 01 —1.546E — 01 —3.864E — 02 4.000E + 00 1.000E + 00
R2 3.982E + 00 1.806E + 03 0.000E + 00 —=7.727E - 02 —1.932E — 02 1.595E + 01 3988E + 00
R 1.000E + 00 1.000E + 00 3.687E + 01 0.000E + 00 0.000E + 00 4.000E + 00 1.000E + 00

‘B, =4,y=4%
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shock dynamics is a shock-tube problem, ie., the generation
of multiple discontinuities or rarefaction waves from an Initial
discontinuity. Figures 7—12 show the results from cur simula-
tions for various shock-tube problems. Their initial left and
right states in the shock tube problems are shown in Tables I-
VI, respectively, where L and R stand for the left and right
states. The dashed lines in these figures are initial conditions,
and the solid lines are the plots at some later time. The Courant
number for stability is set to 0.6 in all these shock-tube
problems.

Figure 7 shows one magnetosonic shock traveling leftward
with a Mach number of 12, another magnetosonic shock propa-
gating to the right with a Mach number of 14.9, and one tangen-
tial discontinuity at ¢ = 0.04. Figure 8 displays results at ¢ =
0.16 which contain one fast shock with a Mach number of 5,
one slow shock with a Mach number of 1.1, and one contact
discontinuity. The generation of two rotational discontinuities,
one fast shock and one contact discontinuity is shown in Fig.
9 which contains the plots at r = 0.08. Across either rotational
discontinuity, the transverse part of the magnetic field rotates
40°. The fast shock has a Mach number of 5.0. Two fast shocks
with a Mach number of 25.5 each may be found in Fig, 10.
We shoutd mention that the structure near x = O in Fig. 10 is
the starting erroer due to the pure discontinuity in the initial
condition. Figure 11 shows the generation of two fast shocks
with Mach numbers of 3.15 and 3.19, two slow shocks with
Mach numbers 1.15 and 1.3, and one contact discontinuity at
t = 0.4. The maximum number of discontinuities which may
be generated from any MHD shock-tube problem is seven.
Figure 12 shows seven discontinuities in one shock-tube prob-
lem at t+ = 0.15, where two fast shocks have Mach numbers
of 1.84 and 2.01, two slow shocks have Mach numbers of
1.38 and 1.49, and across either rotational discontinuity the
transverse part of the magnetic field undergoes a 35° rotation.
Four hundred computational zones between zero and unity have
been used in this example in order to separate the fine structure
between the slow shocks and the rotational discontinuities.

All the discontinuities in each of Figs. 7-12 divide the whole
x-space into several different regions. The physical states are
nearly constant at these different regions. For example, the three
discontinuities in Fig. 7 divide the x-space into four different
regions: L, R2, R3, and R. Tables I-VI give the solutions in
these regions for the Riemann problem with these left and right
states. It is easy to see that the states in the different regions
in each of Figs. 7-12 have good agreement with the solutions
in its corresponding table.

For the purpose of comparison with the solutions of the
corresponding Riemann problems, all the shock-tube problems
we have given do not involve rarefaction waves since the solu-
tions of the Riemann problems may be found using our nonlin-
ear Riemann solver. Although we approximate rarefaction
waves as rarefaction shocks when we calculate the time-aver-
aged fluxes in the MHD Riemann solver, the scheme does work
for rarefaction waves. In Fig. 13 we give the results at ¢ = 0.1

DAL AND WOODWARD

of the problem studied by previous investigators [11, 13, 14]
which is a MHD analogue of the Sod shock tube-problem {26].
The initial conditions are {p, p, u,, u,, u,, B,, B,) = (1. 1, 0,
0, 0, Vam, 0) for x < 0.5 and (1, 0.1, 0, 0, 0, —V4r, 0) for
x > 0.5 with B, = 0.75V4r. The ratio of specific heats is
chosen to be vy = 2 for comparisen with the previous investiga-
tion. Eight hundred zones have been used in this example, as
used by the previous investigators. The Courant number is set
to 0.8 and no artificial viscosity is vsed in this example.

Our scheme does not contain any formulation for compound
waves. It is interesting to note that if we consider the two
postwave states for the two fast rarefaction waves in the solution
as the left and right states for a Riemann problem, the solutions
of the Riemann problem obtained by our Riemann solver
through enough iterations will be exact; it contains a rotaticnal
discontinuity with 180 as well as the slow waves. But the
result of our 1D simulation shows the compound wave, As we
know, a discontinuity represented by the zone-averages in a
numerical calculation are not purely rotational discontinuity
after the first time step if there is an initial discontinuity. Thus
numerical procedures introduce some kind of disturbance to
the rotational discontinuity. The nature of the instability of
a rotational discontinuity with a large rotated angle and the
numerical viscosity/resistivity intrinsically existing in 2 Godu-
nov scheme is responsible for the compound wave.

4.2. Two-Dimensional Situations

In order to test our two-dimensional scheme which is built
upon the one-dimensional functioning code, we give two nu-
merical examples: the propagation of a one-dimensional wave
in a 2D domain, and the interaction between MHD shocks and
a cloud. The first example is of importance for the correctness
of the scheme since its correct solution may be obtained by a
one-dimensional simulation described in Section 3.2, and the
second is to test the performance of our scheme for a problem
involving the interaction between strong shocks.

4.2.1. The Propagation of a Wave

The propagation of a one-dimensional fast wave is simulated
in a two-dimensional domain initially by a fast wave with unity
wavelength obliquely propagating in the domain at an angle
o = 30° with respect to the x-axis {Fig. 14). The longitudinal
component of the magnetic field, B,, is set to 4. The initial
wave is obtained through the set of Riemann invariants,

dRy

T = -3.5@2mcos(2ma ),
d
d_anA:.f-.ai =0

with the values (1, 1, 0, 0, 0, 4, 2) for (p, p, t;, u,, u., B,,
B.) at the point (x, y) = (0, 0), where u, is the longitudinal
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component of the flow velocity, u, and B, are the components
perpendicular the simulation domain of the flow velocity and
the magnetic field, «, and B, are their other transverse compo-
nents; £ is the only space coordinate of the one-dimensional
wave (see Fig. 14). The x- and y-components of the magnetic
field (or the flow velocity) may be obtained by the projection:

B, = B;cosa — B, sine, (11a)
B, = B;sina + B,cos . (11b)

The simulation is performed on a (X — 00 X (Yuax —

0 X

FIG. 14. The geometry in the propagation of a wave in a 1two-dimen-
sional domain.
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TABLE VI

The Exact Solutions for the Riemann Problem in Fig. 127

Regions p p ux uy uz By Bz
L 1.841E — (1 3641E — D) 3.896E + 0D 5.361E — 0] 2.487E + DD 2.394E + 0D 1.197E + 00
R2 3.939E - 1 2.083E + 00 5.971E — 01 1.778E + 00 3.107E + 00 6.840E + 00 3420E + 00
R3 3.939E — 01 2.083E + 00 5971E — 01 2.103E + 0 1.066E + 00 7.563E + 00 —1.122E + 00
R4 S5.750E — 01 4.062E + 00 1.097E — 01 2322E - 01 1.344E + (00 3981E + 00 —5504E — 01
R53 3.833E — 01 4.062E + 00 1.097E — 01 2.322E - 01 1.344E + 00 3981E + 00 —-5.904E - 01
R6 2433E — 01 1.788E + 00 —6.053E — 01 —2428E + O} 1.738E + 00 7.963E + 00 —1.181E + 00
R7 2433E —- 01 1.788E + (0 -6.053E — 01 —1.992E + 00 —-9.960E ~ 01 7.200E + 00 3.600E + 00
R [.GE — (1 1.OGOE — 01 =5500E + 00 (0L.000E + 30 (LOO0E -+ 00 2.000E + ) [LOWE + 00
“B. =4y =%
d plotted in Fig. 17 (dotted lines}, which are hard to see because of
d—fR(,__‘:‘f_,a: =( the solid lines in the figure. B, and B, from the one-dimensional

with values (1.09904e + 00, 1.17046e + 00, 1.92927¢ — 01,
—8.48155¢ — 02, —4.24078 — 02, 4.57010e + 00,
2.28528e + 00) for {p, p, uy, u,, By, Byat £=0and B, = 4.
The initial conditions in the one-dimensional simulation corre-
spond to the initial values at the point (x, ¥) = (0, v, /2) in
the two-dimensional simulation. The projection of the results
of the one-dimensional simulation at r = 0.5 and 1.0 are also

simulation are calculated by Eqs. (11a}(1 Ib}. For the compari-
son, the horizontal coordinate for the dotted lines is &/cos a.
The concurrence between the solid and dotted lines in the figure
indicates the correctness of our multidimensional scheme on
the problem.

4.2.2. Interaction between MHD Shocks and a Cloud

Our numerical scheme is intentionally designed for MHD
problems involving strong shocks. In erder to test the perfor-

- 1.475

1.350

1.285

-~ 3625

5438

- §062
- 4875

4688

FIG. 16. A wave in a two-dimensional domain. The distributions of the two componenis of the magnetic field, B, and B, at s = 0.5 and ¢t = 1.0.
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mance of our code for those MHD problems, we have applied
our code to the interaction between MHD shocks and a cloud.
1n the remainder of this section, we will present the results
from our simulation.

The simulation is performed on a 2 X | square with 512 X
256 uniform rectangular zones. The numerical model we have
used is as follows. The x-axis is toward the direction of the
shock propagation. The initial cloud is assumed to be a eylinder
with a circular cross section. The z-axis is along the cylinder.
Thus the y-axis is perpendicular to both the cylinder and the
direction of the shock propagation. The shock front is initially
located at x = 1.2. The center of the cross section of the cloud
is initially located at (x, ¥) = (1.4, 0.5) and the radius of the

post-shock pre-shock

L5 [ ]

0 12 14 20

FIG. 18. The initial configuration for the intcraction between a fast shock
and a cloud.

cross section is 0.18. The initial configuration of the problem
is shown in Fig. 18. The reference is chosen such that the flow
in the postshock state is at rest in our reference. Thus the fow
in the preshock state moves toward the shock in this reference.

The magnetic field components B, and B, are initially set to
unity and zero, respectively, in the whole simulation domain.
The initial preshock and postshock states for the fast shock are
given by

R [ 388968 ] [p] C ]
p 142614 p 0.04

U, 0] u, —3.3156
u, B 0 | u, B 0

u, —0.05234 . 0

B ook 39353 | |Bfemmos 1

Thus the Mach number M (=W/Cy) = 10, or, W/C, = 17.3,
where W is the shock speed with respect to the preshock state
and Cp and €, are the fast and sound wave speeds in the
preshock state, respectively. The shock speed in the Eulerian
coordinate is about 1.15. The initial cloud is five times more
dense than the preshock state. The initial p, u,, u,, #,, and B,
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FIG. 19. The interaction between shocks and a cloud. The distributions for the mass density, two compenents of the magnetic field. B, and B, at r = 0.6.

for the cloud are the same as in the preshock state. Under these
initial conditions, the B (ratio between the thermal pressure and
the magnetic pressure B*/87) is about 0.5 in the preshock state,
and it is about 21.7 in the postshock state. It is interesting to
note that the thermal pressure is dominant over the magnetic
field pressure in the postshock state, even though it is in the
same order as the magnetic pressure in the preshock state.
Continuation boundary conditions are used. Our code actu-
ally simulates the lower half domain and the situation in the
upper hall domain is duplicated according to the symmetry
about y = 0.5 plane. Figure 19 shows the distributions for the

mass density, two components of the magnetic field, B, and
B,,att = 0.6

5. CONCLUSIONS AND DISCUSSIONS

High-order Godunov schemes have been proven to be very
effective for compressible gas dynamics. The main difficulties
in the development of this type of scheme for MHD equations
have been associated with the Riemann problem, the treatment
of nonstrict hyperbolicity. A high-order Godunov scheme for
multidimensional ideal MHD has been constructed based upon
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